

Wim Mees Filip Van Utterbeeck

06 June 2024



3 levels of learning about Al and Cyber



Engineers

All Officers





- Understand the basic concepts and types of Al
- Military applications of Al
- Utilize AI tools (like ChatGPT) effectively for various applications
- Recognize the limitations and potential risks associated with Al
- Reflect on the ethical, legal and societal implications of AI use
- Reflect on best practices for responsible AI usage in a defence context



• All officers: general cyber awareness

 Part of professional training, not an academic course

• Role of CyCom?



3 levels of learning about Al and Cyber



Engineers

All Officers

### Cybersecurity NIST

### National Initiative for Cybersecurity Education (NICE)



3 levels of learning with Al



### Take-aways

- "literacy" in these fields crucial for ALL officers
  - Not only engineering, also including legal and ethical aspects
- Fast evolving fields -> courses must adapt
- Priority for several nations, specialized personnel crucial
  - In-house vs partnership civilian universities
- "Train the teachers" about AI (partnership civilian universities)





### 3 levels of Al

### **ARTIFICIAL INTELLIGENCE**

A program that can sense, reason, act, and adapt

### **MACHINE LEARNING**

Algorithms whose performance improve as they are exposed to more data over time

### DEEP Learning

Subset of machine learning in which multilayered neural networks learn from vast amounts of data



# Example course from RMA

#### **DS425: Intelligent Decision Making Methods**

#### Introduction to Al

#### Part 1: Search and decision making

- Tree search (uninformed/informed)
- Local Search
- Adverserial Search
- Constraint Satisfaction Problems

#### **Part 2: Machine learning**

- Supervised learning (classical methods/deep learning)
- Unsupervised learning
- Applications in Natural Language Processing
- Reinforcement learning

#### **Research project**





# Building blocks for specialized Al semesters

Knowledge Neural Search Machine History of Al representation Networks and Algorithms **Learning Basics** and reasoning Deep Learning Legal and **Natural** Computer Reinforcement Robotics **Ethical aspects** Language Vision Learning **Processing** in Al Uncertainty and Big Data and Speech Multi-Agent Probabilistic Al Privacy Recognition **Systems** Models

| STUDENT-FOCUSED AIED                                              |  |  |
|-------------------------------------------------------------------|--|--|
| Intelligent Tutoring Systems (ITS)                                |  |  |
| Al-assisted Apps (e.g., maths, text-to-speech, language learning) |  |  |
| Al-assisted Simulations (e.g., games-based learning, VR, AR)      |  |  |
| Al to Support Learners with Disabilities                          |  |  |
| Automatic Essay Writing (AEW)                                     |  |  |
| Chatbots                                                          |  |  |
| Automatic Formative Assessment (AFA)                              |  |  |
| Learning Network Orchestrators                                    |  |  |
| Dialogue-based Tutoring Systems (DBTS)                            |  |  |
| Exploratory Learning Environments (ELE)                           |  |  |
| Al-assisted Lifelong Learning Assistant                           |  |  |
| TEACHER-FOCUSED AIED                                              |  |  |
| Plagiarism detection                                              |  |  |
| Smart Curation of Learning Materials                              |  |  |
| Classroom Monitoring                                              |  |  |
| Automatic Summative Assessment                                    |  |  |
| Al Teaching Assistant (including assessment assistant)            |  |  |
| Classroom Orchestration                                           |  |  |
| INSTITUTION-FOCUSED AIED                                          |  |  |
| Admissions (e.g., student selection)                              |  |  |
| Course-planning, Scheduling, Timetabling                          |  |  |
| School Security                                                   |  |  |
| Identifying Dropouts and Students at risk                         |  |  |
| e-Proctoring                                                      |  |  |

Holmes, W., & Tuomi, I. (2022). State of the art and practice in AI in education. European Journal of Education, 57(4), 542-570

### Cybersecurity

- All officers
  - General cyber awareness
- Engineers / Tech officers
  - Securely provision C4ISR systems
  - Operate & Maintain
  - Oversee & Govern
- Specialists
  - Protect & Defend
  - Analyze threats & Respond to incidents
  - Investigate incidents

# Cybersecurity ENISA



















Educator



Cybersecurity Implementer



Cybersecurity Researcher



Cybersecurity Risk Manager



Digital Forensics Investigator



Tester

# Cybersecurity NIST

#### WHAT IS THE CYBERSECURITY WORKFORCE?

A workforce with work roles that have an impact on an organization's ability to protect its data, systems, and operations.

**CATEGORIES:** A high-level grouping of common cybersecurity functions

**SPECIALTY AREAS:** Represent an area of concentrated work, or function, within cybersecurity and related work

work roles: The most detailed groupings of cybersecurity and related work, which include a list of attributes required to perform that role in the form of a list of knowledge, skills, and abilities (KSAs) and a list of tasks performed in that role

**TASKS:** Specific work activities that could be assigned to an individual working in one of the NICE Framework's Work Roles

**KSAs:** Attributes required to perform Tasks, generally demonstrated through relevant experience or performance-based education and training





# Cybersecurity SANS

#### **Securely Provision (SP)**

#### **Specialty Area: Software Development (DEV)**

Develops and writes/codes new (or modifies existing) computer applications, software, or specialized utility programs following software assurance best practices.

#### **Work Role: Secure Software Developer (SP-DEV-001)**

Develops, creates, maintains, and writes/codes new (or modifies existing) computer applications, software, or specialized utility programs.

| SANS Training Course                                         | GIAC Certification                                  | Work Role Proficiency |
|--------------------------------------------------------------|-----------------------------------------------------|-----------------------|
| DEV522:<br>Defending Web Applications<br>Security Essentials | GWEB:<br>GIAC Certified Web Application<br>Defender | 3: Advanced           |
| SEC540: Cloud Security and DevOps Automation                 | GCSA: GIAC Cloud Security<br>Automation             | 3: Advanced           |

#### **Other Mapped SANS Training and GIAC Certifications:**

SEC505: Securing Windows and PowerShell Automation / GCWN: GIAC Certified Windows Security Administrator SEC506: Securing Linux/Unix / GCUX: GIAC Certified Unix Security Administrator DEV534: Secure DevOps: A Practical Introduction

SEC573: Automating Information Security with Python / GPYC: GIAC Python Coder

### Cybersecurity RMA

- BaMa SSMW
  - Not technology oriented
  - Limited specialization in Ma with 1 Cyber course
- BaMa POL
  - Technology/Engineering oriented
  - Specialization "Network Enabled Capabilities" (NEC)
  - Multiple cyber courses (management of cybersecurity, network security, forensics, malware reverse engineering)
- Ma Cyber (inter-university)
  - 120 ECTS shared cybersecurity curriculum (includes the RMA courses)
  - Not part of RMA curriculum but free admission for RMA students

### Cybersecurity

- Challenging field: rapidly evolving, complex, ...
- Example: cybersecurity of AI (LLM) systems
  - Input validation: from basic fields to complex prompts
  - Supply chain: from software supply chain to "training data, models, augmentation sources (RAG), and software" supply chain
  - Least privilege: from fine-grained ABAC/RBAC/MAC/DAC to the LLM has access to the full datastore
  - Shift left: from convincing software engineers to "educating" data scientist
  - Etc.
- Curriculum must evolve frequently and must be supported by scientific research and SMEs



# Generative AI and Artificial Creativity





### Data

1990 internettraffic:100 GB/day

2017 internettraffic:45000 GB/second





### Generative AI and Artificial Creativity

- Possible military applications
  - Deepfake creation and detection
  - Narrative generation
    - E.g. enhanced situational awareness based on reports (potentially from autonomous devices)
    - Automated reports/orders
    - Proposing alternative COAs
    - Generation of training content (video, image, text)
  - NLP
    - Machine translation, summarization (from text or audio), sentiment analysis
    - Question answering systems/chatbots

# Game playing: intelligent decision making

- Possible military applications
  - Al-enabled wargaming
  - Managing fleets of autonomous vehicles
  - Decision-making assistance
    - Strategic planning
    - Recommendations for COA

## Image understanding

- State of the art
  - Deep learning for image recognition has become more or less "routine"...if training data available
  - Image captioning and visual question answering remain more difficult
- Possible military applications
  - Surveillance of large areas
  - Target recognition
  - Individual targeted surveillance
- Challenges
  - Ethical/Legal implications
  - Adversarial Al



### Robotics

- State of the art
  - Self-driving cars remain around the corner
  - Advanced robots performing acrobatics actually not based on AI but control theory
  - Unmanned autonomous systems
- Possible military applications
  - UAS
  - Logistics/resupply
- Challenges
  - Ethical/Legal implications